Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for Sparsity Reduction
نویسندگان
چکیده
The sparsity problem in collaborative filtering (CF) is a major bottleneck for most CF methods. In this paper, we consider a novel approach for alleviating the sparsity problem in CF by transferring useritem rating patterns from a dense auxiliary rating matrix in other domains (e.g., a popular movie rating website) to a sparse rating matrix in a target domain (e.g., a new book rating website). We do not require that the users and items in the two domains be identical or even overlap. Based on the limited ratings in the target matrix, we establish a bridge between the two rating matrices at a clusterlevel of user-item rating patterns in order to transfer more useful knowledge from the auxiliary task domain. We first compress the ratings in the auxiliary rating matrix into an informative and yet compact cluster-level rating pattern representation referred to as a codebook. Then, we propose an efficient algorithm for reconstructing the target rating matrix by expanding the codebook. We perform extensive empirical tests to show that our method is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary tasks, as compared to many state-of-the-art CF methods.
منابع مشابه
A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملExploiting Social Tags in Matrix Factorization Models for Cross-domain Collaborative Filtering
Cross-domain recommender systems aim to generate or enhance personalized recommendations in a target domain by exploiting knowledge (mainly user preferences) from other source domains. Due to the heterogeneity of item characteristics across domains, content-based recommendation methods are difficult to apply, and collaborative filtering has become the most popular approach to cross-domain recom...
متن کاملMovie Rating Prediction System using Content-Boosted Collaborative Filtering
Recommender Systems are becoming a quinessential part of our lives with a plethora of information available and wide variety of choices to choose from in various domains. Recommender sytems have a wide domain of application from movies, books, music to restaurant, financial services etc. Recommender systems apply knowledge discovery techniques to the problem of making product recommendations. I...
متن کاملAlleviating the Sparsity Problem in Collaborative Filtering by Using an Adapted Distance and a Graph-Based Method
Collaborative filtering (CF) is the process of predicting a user’s interest in various items, such as books or movies, based on taste information, typically expressed in the form of item ratings, from many other users. One of the key issues in collaborative filtering is how to deal with data sparsity; most users rate only a small number of items. This paper’s first contribution is a distance me...
متن کامل